Commutative Algebra Fall 2013, Lecture 1

Karen Yeats
Scribe: Mahdieh Malekian

September 6, 2013

A Bit of Universal Algebra

Definition. Let A be a nonempty set. We define

$$
\begin{aligned}
& A^{0}=\{\varnothing\}, \\
& A^{n}=\text { set of } n-\text { tuples of elements of } A .
\end{aligned}
$$

An n-ary function (or n-ary operation) on A is a function $A^{n} \longrightarrow A$, where n is the arity of the function.
Note. A 0-ary function just indicates a constant in A.
Definition. A language or type is a set \mathcal{F} of function symbols each with an associated arity. An algebra of type \mathcal{F} is an ordered pair $\mathcal{A}=(A, F)$, where A is a nonempty set and F is a set of functions on A indexed by \mathcal{F} and with matching arities.

An algebraic structure is an ordered triple $\mathcal{A}=(A, \mathcal{F}, d)$, where (A, \mathcal{F}) is an \mathcal{F} algebra and d is a set of identities using \mathcal{F} and ' $=$ ' symbol and variable symbols, where we interpret an identity $\alpha\left(x_{1}, \ldots, x_{n}\right)$ as the sentence $\forall x_{1} \forall x_{2} \ldots \forall x_{n}, \alpha\left(x_{1}, \ldots, x_{n}\right)$. So we will have no quantifier except outer \forall 's. The signature of an algebraic structure or \mathcal{F} algebra is \mathcal{F}. (Our book defines it as (\mathcal{F}, d), but then isn't always consistent.)

Example 1 Groups.

$$
\begin{aligned}
\left(G,\left(.,^{-1}, 1\right),\right. & (x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x \cdot x^{-1}=1=x^{-1} \cdot x \\
& x \cdot 1=1 \cdot x=x))
\end{aligned}
$$

And for abelian groups we have:

$$
\begin{aligned}
\left(G,\left(.,^{-1}, 1\right),\right. & (x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x \cdot x^{-1}=1=x^{-1} \cdot x \\
& x \cdot 1=1 \cdot x=x \\
& x \cdot y=y \cdot x))
\end{aligned}
$$

Example 2 Rings.

$$
\begin{aligned}
(R,(+, .,-, 0,1), & (R,(+,-, 0)) \text { is an abelian group } \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x \cdot 1=1 \cdot x=x \\
& x \cdot(y+z)=x \cdot y+x \cdot z \\
& (y+z) \cdot x=y \cdot x+z \cdot x)
\end{aligned}
$$

Note. Signature does not need to be finite.
Example 3 Let F be a field. Vector spaces over F are $\left(V,\left(+,-, 0,\left(m_{\lambda}\right)_{\lambda \in F}\right)\right.$ satisfying $(V,(+,-, 0))$ is an abelian group, and where m_{λ} is scalar multiplication by λ :

$$
\begin{gathered}
\forall \lambda \in F, m_{\lambda} \cdot(x+y)=m_{\lambda} \cdot x+m_{\lambda} \cdot y \\
\forall \lambda, \mu \in F, m_{\lambda}\left(m_{\mu}(x)\right)=m_{\lambda \mu}(x) \text { and } m_{\lambda}(x)+m_{\mu}(x)=m_{\lambda+\mu}(x) .
\end{gathered}
$$

As usual by abuse of notation the underlying set and the structure will have the same name.
Definition. Let A and B be two \mathcal{F} algebras. Then a function $f: A \longrightarrow B$ is a homomorphism if for any n-ary operation $\phi \in \mathcal{F}$,

$$
\phi^{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)=f\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right)\right) \quad \forall a_{1}, \ldots, a_{n} \in A
$$

where ϕ^{B} means ϕ as interpreted in B.
Let A be an \mathcal{F} algebra. A substructure (or a subalgebra) of A is a subset of A which is closed under all the operations of the signature.
Note. By their structure, all identities of A hold automatically in a substructure.

An isomorphism is a homomorphism which is one-to-one and onto.
In our setup the above requirements for a homomorphism to be an isomorphism are sufficient. If, however, you extend the definitions to allow relations in F as well as functions then you need to require also that the inverse map is a homomorphism.

To see that in our setup the requirements are actually sufficient, suppose f is a homomorphism and a set-bijection. Take $\phi \in \mathcal{F}, n$-ary and $a_{1}, \ldots, a_{n} \in$ $A, b_{1}, \ldots, b_{n} \in B$ such that $f\left(a_{i}\right)=b_{i}$. Let $g=f^{-1}$, then

$$
\begin{aligned}
f\left(\phi^{A}\left(g\left(b_{1}\right), \ldots, g\left(b_{n}\right)\right)\right) & =f\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right)\right) \\
& =\phi^{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \\
& =\phi^{B}\left(b_{1}, \ldots, b_{n}\right) .
\end{aligned}
$$

So $\phi^{A}\left(g\left(b_{1}\right), \ldots, g\left(b_{n}\right)\right)=g\left(\phi^{B}\left(b_{1}, \ldots, b_{n}\right)\right)$.
Definition. An embedding or monomorphism is a one-to-one homomorphism. An epimorphism is an onto homomorphism.

The next thing we turn to is how to take quotients.

Definition. Let A be an \mathcal{F} algebra, and θ an equivalence relation on A, and suppose for $\forall \phi \in \mathcal{F}$ which is n-ary if $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in A$ with $a_{i} \theta b_{i}$,

$$
\phi^{A}\left(a_{1}, \ldots, a_{n}\right) \theta \phi^{A}\left(b_{1}, \ldots, b_{n}\right)
$$

Then we say θ is a congruence on A.
The point is that the compatibility property in the definition above introduces an \mathcal{F} algebra structure on A / θ as follows

$$
\phi^{A / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\phi^{A}\left(a_{1}, \ldots, a_{n}\right) / \theta
$$

and this is well defined by the property.
Another way to look at the compatibility property is: First view $A \times A$ as an \mathcal{F} algebra coordinatewise, i.e.,

$$
\phi^{A \times A}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)=\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right), \phi^{A}\left(b_{1}, \ldots, b_{n}\right)\right) .
$$

Then, if view $\theta \subseteq A \times A$ then the compatibility property says θ is a substructure. Take $\left(a_{i}, b_{i}\right) \in \theta$ (i.e. $\left.a_{i} \theta b_{i}\right)$, then

$$
\phi^{\theta \subseteq A \times A}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)=\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right), \phi^{A}\left(b_{1}, \ldots, b_{n}\right)\right)
$$

is in θ iff $\phi^{A}\left(a_{1}, \ldots, a_{n}\right) \theta \phi^{A}\left(b_{1}, \ldots, b_{n}\right)$. So the compatibility property is equivalent to θ being closed.

Proposition 1 Let A and B be \mathcal{F} algebras, $f: A \longrightarrow B$ a homomorphism. Let C be a substructure of A then $f(C)$ is a substructure of B.
Let D be a substructure of B, then $f^{-1}(D)$ is a substructure of A.
Proof. Take $\phi \in \mathcal{F}$, which is n-ary, and $a_{1}, \ldots, a_{n} \in C$. We have

$$
\phi^{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)=f\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right)\right) \in f(C)
$$

For the other part,take $b_{1}, \ldots, b_{n} \in D$. For any a_{1}, \ldots, a_{n} with $f\left(a_{i}\right)=b_{i}$ we have

$$
\underbrace{\phi^{B}\left(b_{1}, \ldots, b_{n}\right)}_{\in D}=f(\underbrace{\phi^{A}\left(a_{1}, \ldots, a_{n}\right)}_{\in f^{-1}(D)})
$$

Definition. For $f: A \longrightarrow B$ as above we define kernel f to be

$$
\operatorname{ker}(f)=\left\{(a, b) \in A^{2}: f(a)=f(b)\right\}
$$

Proposition 2 For $f: A \longrightarrow B$ as above, $\operatorname{ker}(f)$ is a congruence on A.

Proof. First note that $\operatorname{ker}(f)$ is a n equivalence relation since ' $=$ ' is. Now, take $\phi \in \mathcal{F}$, which is an n-ary, and $\left(a_{i}, b_{i}\right) \in \operatorname{ker}(f), 1 \leq i \leq n$. Then

$$
\begin{aligned}
f\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right)\right) & =\phi^{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \\
& =\phi^{B}\left(f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right) \\
& =f\left(\phi^{A}\left(b_{1}, \ldots, b_{n}\right)\right) .
\end{aligned}
$$

So $\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right), \phi^{A}\left(b_{1}, \ldots, b_{n}\right)\right) \in \operatorname{ker}(f)$, so $\operatorname{ker}(f)$ is a congruence.
Therefore, $A / \operatorname{ker}(f)$ makes sense as an object. Further, for any congruence θ we have the natural map

$$
\begin{aligned}
\nu: A & \longrightarrow A / \theta \\
a & \longmapsto a / \theta,
\end{aligned}
$$

and this is a homomorphism by definition.
Theorem 1 (First Isomorphism Theorem, universal algebra version) Let A, B be \mathcal{F} algebras, and $f: A \longrightarrow B$ a homomorphism. Then there is a monomorphism $g: A / \operatorname{ker}(f) \longrightarrow B$ such that

commutes (i.e. $f=g \circ \nu$), and, in particular, if f is onto then g is an isomorphism.
Proof. Try $g(a / \operatorname{ker}(f))=f(a)$. If this is well defined then $f=g \circ \nu . g$ is indeed well defined, as if a and b are in the same $\operatorname{ker}(f)$ equivalence class, $a / \operatorname{ker}(f)=b / \operatorname{ker}(f)$, or, eqivalently, $(a, b) \in \operatorname{ker}(f)$ or $f(a)=f(b)$. This, also, gives that g is one-to-one.

To check that g is a homomorphism, take $\phi \in \mathcal{F}$ an n-ary, $a_{1}, \ldots, a_{n} \in A$, then

$$
\begin{aligned}
g\left(\phi^{\frac{A}{\operatorname{ker}(f)}}\left(\frac{a_{1}}{\operatorname{ker}(f)}, \ldots, \frac{a_{n}}{\operatorname{ker}(f)}\right)\right) & =g\left(\frac{\phi^{A}\left(a_{1}, \ldots, a_{n}\right)}{\operatorname{ker}(f)}\right) \\
& =f\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right)\right) \\
& =\phi^{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \\
& =\phi^{B}\left(g\left(\frac{a_{1}}{\operatorname{ker}(f)}\right), \ldots, g\left(\frac{a_{n}}{\operatorname{ker}(f)}\right)\right) .
\end{aligned}
$$

Definition. Let θ and γ be congruences of A and suppose $\theta \subseteq \gamma$ as subsets of $A \times A$. Then let

$$
\frac{\gamma}{\theta}=\left\{\left(\frac{a}{\theta}, \frac{b}{\theta}\right) \in\left(\frac{A}{\theta}\right)^{2}:(a, b) \in \gamma\right\} .
$$

Proposition 3 With θ, γ as above, $\frac{\gamma}{\theta}$ is a congruence on $\frac{A}{\theta}$.
Proof. Take $\phi \in \mathcal{F}, n$-ary, and $\left(\frac{a_{i}}{\theta}, \frac{b_{i}}{\theta}\right) \in \frac{\gamma}{\theta}, 1 \leq i \leq n$, then $\left(a_{i}, b_{i}\right) \in \gamma$ by definition. So

$$
\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right), \phi^{A}\left(b_{1}, \ldots, b_{n}\right)\right) \in \gamma
$$

since γ is a congruence. So

$$
\begin{aligned}
\left(\phi^{\frac{A}{\theta}}\left(\frac{a_{1}}{\theta}, \ldots, \frac{a_{n}}{\theta}\right), \phi^{\frac{A}{\theta}}\right. & \left.\left(\frac{b_{1}}{\theta}, \ldots, \frac{b_{n}}{\theta}\right)\right) \\
& =\left(\frac{\phi^{A}\left(a_{1}, \ldots, a_{n}\right)}{\theta}, \frac{\phi^{A}\left(b_{1}, \ldots, b_{n}\right)}{\theta}\right) \\
& \in \frac{\gamma}{\theta}
\end{aligned}
$$

Theorem 2 (Second Isomorphism Theorem, universal algebra version) Let A be an \mathcal{F} algebra, $\theta \subseteq \gamma$ congruence on A. Then there is an isomorphism

$$
\frac{\left(\frac{A}{\theta}\right)}{\left(\frac{\gamma}{\theta}\right)} \longrightarrow \frac{A}{\gamma}
$$

given by $f\left(\frac{\left(\frac{a}{\theta}\right)}{\left(\frac{\gamma}{\theta}\right)}\right)=\frac{a}{\gamma}$.
Proof. Similar to the others.
The Third Isomorphism Theorem is a bit more technical. For A an \mathcal{F} algebra, θ congruence on A, and B a subset of A, define $B^{\theta}=\left\{a \in A: B \cap \frac{a}{\theta} \neq \varnothing\right\}$, and $\left.\theta\right|_{B}=\theta \cap B^{2}=\theta$ restricted to B.

Proposition $4 B^{\theta}$ is a substructure of A and $\left.\theta\right|_{B}$ is a congruence of B.
Proof. The second is easy. For the first, take $\phi \in \mathcal{F}, n$-ary, and $a_{1}, \ldots, a_{n} \in B^{\theta}$. Then I can take $b_{1}, \ldots, b_{n} \in B$ such that $\left(a_{i}, b_{i}\right) \in \theta$, so

$$
\left(\phi^{A}\left(a_{1}, \ldots, a_{n}\right), \phi^{A}\left(b_{1}, \ldots, b_{n}\right)\right) \in \theta
$$

and

$$
\phi^{A}\left(b_{1}, \ldots, b_{n}\right)=\phi^{B}\left(b_{1}, \ldots, b_{n}\right) \in B
$$

so $\phi^{A}\left(a_{1}, \ldots, a_{n}\right) \in B^{\theta}$.
Theorem 3 (Third Isomorphism Theorem, universal algebra version) Let A be an \mathcal{F} algebra, B its substructure, and θ a congruence of A. Then there is an isomorphism

$$
\frac{B}{\left(\left.\theta\right|_{B}\right)} \longrightarrow \frac{B^{\theta}}{\left(\left.\theta\right|_{B^{\theta}}\right)}
$$

given by $f\left(\frac{b}{\left(\left.\theta\right|_{B}\right)}\right)=\frac{b}{\left(\left.\theta\right|_{B^{\theta}}\right)}$.

References

[1] Burris, Sankappanavar, A course in Universal Algebra, www.math.uwaterloo.ca/ snburris/htdocs/ualg.html.

